The Camassa Holm Equation: Conserved Quantities and the Initial Value Problem
نویسندگان
چکیده
Using a Miura-Gardner-Kruskal type construction, we show that the Camassa-Holm equation has an infinite number of local conserved quantities. We explore the implications of these conserved quantities for global well-posedness.
منابع مشابه
Blow-up of solution of an initial boundary value problem for a generalized Camassa-Holm equation
In this paper, we study the following initial boundary value problem for a generalized Camassa-Holm equation
متن کاملPersistence Property and Asymptotic Description for DGH Equation with Strong Dissipation
where the constants α2 and γ/c 0 are squares of length scales and the constant c 0 > 0 is the critical shallow water wave speed for undisturbed water at rest at spatial infinity. Since this equation is derived by Dullin, Gottwald, and Holm, in what follows, we call this new integrable shallow water equation (1) DGH equation. If α = 0, (1) becomes the well-known KdV equation, whose solutions are...
متن کاملInitial boundary value problem and asymptotic stabilization of the Camassa-Holm equation on an interval
We investigate the nonhomogeneous initial boundary value problem for the Camassa-Holm equation on an interval. We provide a local in time existence theorem and a weak strong uniqueness result. Next we establish a result on the global asymptotic stabilization problem by means of a boundary feedback law.
متن کاملUniqueness of Conservative Solutions to the Camassa-Holm Equation via Characteristics
The paper provides a direct proof the uniqueness of solutions to the Camassa-Holm equation, based on characteristics. Given a conservative solution u = u(t, x), an equation is introduced which singles out a unique characteristic curve through each initial point. By studying the evolution of the quantities u and v = 2 arctanux along each characteristic, it is proved that the Cauchy problem with ...
متن کاملOn Time Fractional Modifed Camassa-Holm and Degasperis-Procesi Equations by Using the Haar Wavelet Iteration Method
The Haar wavelet collocation with iteration technique is applied for solving a class of time-fractional physical equations. The approximate solutions obtained by two dimensional Haar wavelet with iteration technique are compared with those obtained by analytical methods such as Adomian decomposition method (ADM) and variational iteration method (VIM). The results show that the present scheme is...
متن کامل