The Camassa Holm Equation: Conserved Quantities and the Initial Value Problem

نویسندگان

  • Michael Fisher
  • Jeremy Schiff
چکیده

Using a Miura-Gardner-Kruskal type construction, we show that the Camassa-Holm equation has an infinite number of local conserved quantities. We explore the implications of these conserved quantities for global well-posedness.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Blow-up of solution of an initial boundary value problem for a generalized Camassa-Holm equation

In this paper, we study the following initial boundary value problem for a generalized Camassa-Holm equation

متن کامل

Persistence Property and Asymptotic Description for DGH Equation with Strong Dissipation

where the constants α2 and γ/c 0 are squares of length scales and the constant c 0 > 0 is the critical shallow water wave speed for undisturbed water at rest at spatial infinity. Since this equation is derived by Dullin, Gottwald, and Holm, in what follows, we call this new integrable shallow water equation (1) DGH equation. If α = 0, (1) becomes the well-known KdV equation, whose solutions are...

متن کامل

Initial boundary value problem and asymptotic stabilization of the Camassa-Holm equation on an interval

We investigate the nonhomogeneous initial boundary value problem for the Camassa-Holm equation on an interval. We provide a local in time existence theorem and a weak strong uniqueness result. Next we establish a result on the global asymptotic stabilization problem by means of a boundary feedback law.

متن کامل

Uniqueness of Conservative Solutions to the Camassa-Holm Equation via Characteristics

The paper provides a direct proof the uniqueness of solutions to the Camassa-Holm equation, based on characteristics. Given a conservative solution u = u(t, x), an equation is introduced which singles out a unique characteristic curve through each initial point. By studying the evolution of the quantities u and v = 2 arctanux along each characteristic, it is proved that the Cauchy problem with ...

متن کامل

On Time Fractional Modifed Camassa-Holm and Degasperis-Procesi Equations by Using the Haar Wavelet Iteration Method

The Haar wavelet collocation with iteration technique is applied for solving a class of time-fractional physical equations. The approximate solutions obtained by two dimensional Haar wavelet with iteration technique are compared with those obtained by analytical methods such as Adomian decomposition method (ADM) and variational iteration method (VIM). The results show that the present scheme is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999